How to do a spin-coated PDMS layer? – Application Note

Introduction

PDMS-membraneA thin layer of PDMS is called a PDMS membrane. The PDMS membrane has several properties which make it quite valuable.

Indeed thanks to the permeability of PDMS, the membrane can be used to exchange gas or small molecules between two liquids or a gas and a liquid without direct contact. What’s more, thanks to the softness of PDMS, a membrane can be used to create valves such as Quake valves.

Other applications can be imagined, everything will mainly depend on the thickness of the layer that define the diffusion and the softness of the layer. We are going to see here how to make a PDMS membrane and manipulate it. The PDMS membrane can be done with few equipment that you can find in our full Soft-lithography station.

Need an advice about PDMS membrane?

Feel free to contact us at:

contact@elveflow.com

Ask me your question

(We will answer within 24 hours)





Email (Mandatory)

Your needs

The process for PDMS membrane fabrication is composed of 4 main steps

  1. The preparation of the substrate
  2. The sacrificial layer realization
  3. The PDMS membrane realization
  4. The PDMS membrane release

1. PDMS membrane : The preparation of the substrate

The PDMS membrane is generally done on a wafer which will be used in a spin coater to realize the PDMS membrane. Before use the wafer has to be cleaned. A classic cleaning is recommended as described here.

If you are in a clean room, you can clean it with piranha solution (H2SO4+H2O2), outside a clean room you can use acetone. The cleaning can be optional if you are sure about the state of your wafer but strongly advised In any case you have to heat your wafer to remove all moisture on the surface. We advice 15min at 120°C in an oven for example. If needed, a plasma treatment (O2 or Air plasma works fine) during 5 minutes will increase the spreading.

resin-epoxy-SU8-lithography-cleaning.20.29

AZ4562 spin coating

Spin coating parameters:

Speed Acceleration Time
Step 1 500 rpm 300 rpm/s 10s
Step 2 5000 rpm 300 rpm/s 30s

2. PDMS membrane : The sacrificial layer realization

To be able to remove the PDMS from the substrate, the best way is to use a sacrificial layer that will be removed at the end of the process to release the PDMS.

 You can use several materials for the sacrificial layer, we use some AZ4562 photoresist because it is easy to handle and works perfectly.

To create the AZ4562, spin coat the photoresist (1ml per inch of the substrate), you will obtain a thin and planar layer. Then bake it at 100°C during 2 minutes. There is no need to have a temperature ramp for heating or cooling down, so you can directly remove the wafer from the hot plate after the 2 minutes.

There is no need to expose the photoresist, the wafer is already ready for the next step.

3. The PDMS membrane realization

The PDMS membrane is made by spin coating the PDMS on the substrate, so before that, the PDMS has to be prepared. It means, mixing of the monomer and of the curing agent (10/1) and degassing the PDMS. You can find more information on these steps thank to our tutorial on “How to make a PDMS chip?“.

The most relevant step is now, the spin coating of the PDMS since the speed, the acceleration, and the time of the spin coating will define the thickness of the layer you want.

You will be able to have some information on what kind of layer you might obtain according to the parameters you are using in the following graphic.

microfluidic PDMS membrane thickness 1Figure 1: Dependence of PDMS layer thickness for microfluidic devices as a function of spin-coating speed for a 5 min spin-coating time (left) and as a function of spin-coating time for two given spin-coating speeds (right).

PDMS part A and part B (Sylgard 184, Dow Corning) mixed in a 10:1 (weight:weight) ratio and steered during 2 minutes. The PDMS was placed in vacuum desiccators for degassing (10–13 minutes) before use. Total preparation time: 15 minutes. Figure adapted from [1].

microfluidic PDMS membrane thickness 2

Figure 2: PDMS layer thickness as a function of spin-coating speed

Sylgard-184 PDMS used just after base and curing agent were mixed in a 10:1 ratio. Dark blue circles are data points from [3] with a 60s spin-coating time, light blue circles are measurements with a 30s spin-coating time and the solid line is the theoretical fit W=0.23 ω-1.14 (W in meters, ω in rpm).

4. The PDMS membrane release

Now you have your membrane at the wanted thickness but it is quite difficile to handle and take it out the wafer, that’s why we used a sacrificial layer.

You just have to put the wafer in a acetone solution and wait the dissolution of the AZ4562. It will take few minutes (2-3min), then you will have your PDMS membrane floating on the surface.

Note that the best is to keep the PDMS membrane into water to easily manipulate it since it is really sticky.

PDMS-membrane

Congratulation you have done your PDMS membrane!

soft-lithography-SU-8-PDMS-microfluidic-chips

Begin with Soft-lithography ?

Do your own  SU8 Mold and PDMS chips

> We install everything & train your team in 1 week

> Plug and play soft-lithography protocol

> Get the highest resolution without clean room 

 

Tutorials : Introduction about soft lithography

Definition Microfluidic

Soft-lithography definitions

When you talk about microfluidic some words can be new, we gather here some common and relevant definitions ...
Read More
Microfluidic-fabrication-technics-short

Introduction about soft-lithography for microfluidics

Unlike photolithography, soft lithography can process a wide range of elastomeric materials, i.e. mechanically soft materials ...
Read More
PDMS-membrane-short

PDMS membrane: thickness of a spin coated PDMS layer

The final PDMS layer thickness mainly depends of spin-coating speed and duration ...
Read More
Photolithography-mask-short

Introduction about photomask in microfluidics

A photolithography mask is an opaque plate or film with transparent areas that allow light to shine through a defined pattern ...
Read More
Microfluidic Wafer SU8 Mold

SU-8 mold lithography

Here you can find a complete over view of a SU-8 mold fabrication process ...
Read More
PDMS-chip-short

PDMS softlithography

Here you can find a complete over view of a PDMS chip replication ...
Read More

Tutorials : How to choose your soft lithography instrument

Microfluidic 3D Printer

Microfluidic 3D printer

Every following technology are based on the same system of additive process, every object is build layer by layer after being sliced by an informatics systems ...
Read More
How-to-choose-plasma-pdms

PDMS Soft lithography : Plasma cleaner

A plasma cleaner to bond your PDMS chip, you will find here the relevant points to think about ...
Read More
UVLamp-short-HowToChoose

SU-8 photolithography : UV sources

An UV Lamp to exposed your SU-8 photoresist, you will find here the relevant points to think about ...
Read More
Spin-coater-short-HowToChoose

SU-8 photolithography : Spin coater

A spin coater to create thin layer of photoresist or PDMS, you will find here the relevant points to think about ...
Read More
Hot-plate-short-HowToChoose

SU-8 photolithography : Hot plates

A hot plate to bake your SU-8 photoresist, you will find here the relevant points to think about ...
Read More
Photolithography-mask-HowToChoose

SU-8 photolithography: photomask

Basically you have the choice between glass or plastic photolithography mask, but how to do choice? you will find here some information to help you in the decision ...
Read More

Tutorials : How to get the best soft lithography  process

PDMS microfluidic light

Soft lithography SU-8 Coating

In soft lithography, the fabrication of a mold, often made in SU-8, is required for replicating PDMS microfluidic structures ...
Read More
Soft Lithography SU-8 baking

Soft Lithography: SU-8 baking

Replicating PDMS-based structures first requires the fabrication of a SU-8 master mold that will serve as a patterned template for PDMS casting ...
Read More
Spin-coater-short-HowToChoose

SU-8 photolithography: Spin-coating

How do you do to have a successful spin coating? Here you will find the tips and tricks to do it ...
Read More
Hot-plate-short-HowToChoose

SU-8 photolithography: Baking

How do you do to have a successful photoresist baking? Here you will find the tips and tricks to do it ...
Read More
UVLamp-short-HowToChoose

SU-8 photolithography: UV exposure

How do you do to have a successful SU-8 exposure? Here you will find the tips and tricks to do it ...
Read More
How-to-choose-plasma-pdms

Soft lithography: Glass/PDMS bonding

How do you do to have a successful PDMS bonding with a plasma cleaner? Here you will find the tips and tricks to do it ...
Read More

Tutorials : Microfluidic devices fabrication

Photolithography-mask-short

Fabrication of glass and film photomasks

The photolithography mask is an important tool in soft photolithography processes, we explain here how they are made ...
Read More

Influence of your microfluidic laboratory environmental parameters on your photomask

PDMS chips, soft lithography ... Do it yourself ! More information about the SoftLithoBox®   Environmental and mechanical conditions can affect the ...
Read More
Microfluidic-foundries-short

Microfluidic Foundries

If you don’t fabricate your microfluidic device by yourself, it is important to choose the right manufacturer to fabricate your microfluidic chips. Here is a list of microfluidic foundries ...
Read More
Microfluidic-fabrication-technics-short

Microfluidic fabrication technics

It exist different technics to fabricate microfluidic devices but the main can be resume by Etching, Thermoforming, Polymer ablation and Polymer casting ...
Read More

Article written by Guilhem Velvé Casquillas, Maël Le Berre, Emmanuel Terriac, Fabien Bertholle, Timothée Houssin and Sebastien Cargou.

[1]: Koschwanez, J. H., Carlson, R. H. & Meldrum, D. R. Thin PDMS Films Using Long Spin Times or Tert-Butyl Alcohol as a Solvent. PLoS ONE 4, e4572 (2009).

[2]: http://willem.engen.nl/uni/intern-mbx/material/Sylgard-184-spincoat.php

[3]: Zhang, W. Y., Ferguson, G. S. & Tatic-Lucic, S. Elastomer-supported cold welding for room temperature wafer-level bonding. in Micro Electro Mechanical Systems, 2004. 17th IEEE International Conference on. (MEMS) 741–744 (2004). doi:10.1109/MEMS.2004.1290691