Accurately control pressure to push and pull liquid
Pair it with a flow sensor for accurate flow control
High precision and responsiveness for your flow regulation
Automate and control your microfluidic experiment
Designed by scientists for scientists, the versatile and powerful OB1 MK4 pressure controller provides the perfect flow control for all kinds of applications. Whether you need pressure or vacuum, low or high flow rate, for short or week-long processes and experiments, the OB1 MK4 is the ideal instrument for your microfluidic needs.
Check out our OB1 animation here!
The Elveflow OB1 MK4 is one of the best performing microfluidic flow control instruments worldwide that uses piezoelectric regulators. The piezoelectric technology gives you 20 times more precise and 10 times faster flow control than any other flow controller on the market.
The OB1 MK4 can be configured according to your needs. In one piece of equipment, you can have up to 4 pressure and/or vacuum channels (and other customized options). If your needs change, the instrument can be upgraded later, in any way you want.
Connect the OB1 MK4 to a standard liquid flow rate sensor (MFS) or our premium Coriolis flow sensor (BFS, suitable for both liquid and gas) to directly control the flow rate in your chip. The system continuously calculates the pressure and maintains the desired and constant flow rate.
Single and intuitive software to get started in a few clicks and automate complex and long experiments. The SDK libraries allow you to control the OB1 MK4 using your own code while connecting it to other instruments. The MK4 is also equipped with UART communication protocol in addition to the ESI and SDKs control, allowing it to communicate with most control systems, such as Mac, Linux, Arduino, PLC.
The OB1 MK4 can be used on a bench setup or embedded in your own product. Elveflow has a solution for every step of your research & development. Discover our OB1 MK4 OEM solution.
Thanks to its ultra-fast response time, high stability, and precise flow control, the OB1 pressure controller is a preferred choice for a wide range of liquid handling microfluidic applications, compared to syringe pumps or peristaltic pumps. Combined with precision flow sensors (like MFS or BFS), the OB1 pressure controller can accurately control flow rate in any microfluidic setups. Below is an overview of how pressure-driven flow control improves research across different domains.
Droplet Microfluidics Flow control microfluidics offers unmatched stability and responsiveness when generating monodisperse droplets in microchannels. The precise flow control is essential for the generation of identical droplets avoiding most post-synthesis steps. This monodispersity is essential in applications like digital PCR, single-cell analysis, or encapsulation. Explore droplet generation setup
Alginate Bead Generation In biomedical research, alginate beads are used to encapsulate cells or molecules. Pressure-driven systems allow fine-tuned control over flow rates, ensuring uniform bead size and reliable encapsulation efficiency. See the alginate bead pack.
Cell Perfusion Pressure-based perfusion ensures bubble-free, pulsation-free delivery of nutrients or drugs to cultured cells over extended periods, ideal for mimicking physiological flow conditions. Discover perfusion setup
Organ-on-a-Chip Simulating organ-level responses on chips requires controlled fluid environments. Pressure-driven systems provide the accuracy and reactivity needed to replicate dynamic flow patterns and shear stress. Learn about Organ-on-a-Chip systems
Cell Confinement Assays Experiments that study how cells adapt to physical constraints benefit from stable pressure control to reproducibly apply mechanical stress. See confinement assay example
Cell Constriction Assays Revealing cellular responses to fibrotic environments or disease models requires reproducible deformation of cells, enabled by finely tuned pressure-controlled flows. View ischemia model example
Cell Trapping & Synthetic Compartments Pressure-driven flows help trap and localize cells or materials in adapted microfluidic chips, useful in synthetic biology or compartmentalization studies. Read the synthetic cells study
Sequential Injection & Mixing Delivering fluids in a precise sequence or generating on-chip gradients requires fast and programmable flow transitions. Pressure controllers enable seamless transitions between multiple fluid inlets. Explore the injection pack
Recirculation Some in vitro assays require long term dynamic flow of reagents or cell culture media. In most cases it is essential to reuse the media, in order to mimic physiological conditions or avoid expenses. Using pressure-based flow control, one-way recirculation is possible to program for long term experiments.Learn about the recirculation setup
Flow Chemistry Pressure-driven systems provide accurate reagent dosing and fast startup/shutdown, essential for reaction optimization in continuous-flow chemistry. This is particularly useful in the development of immunoassays and biosensors. See flow chemistry application
Liquid-Phase Electron Microscopy (LPEM) Stable, pulseless flow is critical for imaging samples in real time at the nanoscale. Pressure control allows precise delivery of fluids during live-cell imaging under an electron beam, especially to study samples in their natural environment. Explore LPEM research
Light-Field Flow Cytometry (LFC) In high-throughput single-cell analysis, stable and controlled flow conditions are key to accurate imaging and data capture. Pressure-based systems enable high-speed and consistent sample handling. Learn about 3D LFC
Enhanced Oil Recovery (EOR) Microfluidic chips simulating porous media allow researchers to visualize oil displacement mechanisms. Pressure control enables fine adjustment of flow to mimic subsurface conditions with high reproducibility. Read the full EOR review
Cosmetic Formulation & Testing
Microfluidics offers new possibilities for precision formulation of cosmetic emulsions and nano-encapsulation of active ingredients. Pressure-driven flow ensures reproducibility and scalability for testing stability, texture, or skin permeability on-chip. Explore cosmetic applications
Lab-on-a-Chip Platforms At the core of any lab-on-a-chip system is the need for precise, responsive, and stable flow control, features inherently supported by pressure-driven microfluidics. Whether it’s diagnostics, environmental sensing, or point-of-care testing, the OB1 system provides the control backbone required for success. Discover some lab-on-chip examples in this review
For all publications featuring our products, please click here.
For all application notes based on our product, please click here.
For reviews of our product, please click here.
This table summarizes the main specifications of the Elveflow OB1 MK4 pressure controller.
Non-contractual information, may be changed without notice
(1) Max pressure value might vary by +/- 2.5% (2)Pressure stability (standard deviation) measured over the full pressure range with an external high accuracy pressure sensor (Druck DPI150) (3) Time required to reach 5% of the setting point. Depends on the computer operating system (4) Time required to reach 95% of the set point. Volume dependent – Measurement was done on 12 mL reservoir for a set point from 0 to 200 mbar (5) A vacuum source is mandatory for calibration and use of dual channels even if the channels are to be used in pressure only
The performances of the OB1 (for example, the pressure stability) is tied to the full operating pressure range.
In order to achieve optimum performance, we recommend our users to choose the smallest pressure range that covers the required experimental pressures.
By coupling a MFS or BFS flow sensor to the OB1 flow controller, you can use the software to directly control the flow rate by directly inputting the flow rate value.
The software uses a PID loop to control the flow rate by setting automatically the pressure to reach the requested flow rate. Doing so, you can benefit of the best of the two worlds to get a fast and precise (pressure driven) volume flow rate (flow sensor).
Pressure and flow sensors can be connected directly to the OB1 MK4. The sensors can be used in passive mode (for monitoring only) or active mode (to enslave).
Yes, you will need a pressure source to work with the OB1 pressure controller.
You can either use the air supply of your lab if there is one, use a compressed air bottle or use an air compressor. Elveflow has selected a compressor that is perfectly fitted for most application using the OB1.
If your OB1 has a vacuum channel, you will need a vacuum pump. Elveflow also proposes a selected pump that work perfectly with the OB1.
Click here
Unboxing video
ESI is Elveflow’s dedicated software interface, built to make life easier for experimenters. It is perfectly adapted for the control of simple and complex setups and workflow automation. It integrates several modules that make time-consuming and painful tasks simple. It comes with SDK libraries to control the Elveflow system from your own code.
The OB1 control window allows to:
“We are using the device extensively at the moment and I have been quite impressed by its capabilities”Dr. Hayden Taylor, University of California, Berkeley, United States OB1 flow controller user
“I found the systems quite robust and easy to connect and use”Martino Chiara - deMello Group, ETH Zurich, Switzerland Droplet pack user
“The OB1 is performing so well and we are very impressed by its behavior so far.”Eric Pedrol Ripoll, Facultat de Quimica, Universitat Rovira i Virgili, SpainOB1 flow controller user
“The Elveflow OB1 enables us precise pressure and flow control and measurement in various microfluidic and lab scale projects from tissue engineering to membrane filtration analysis. ”Arne Lüken, Chemical Process Engineering at RWTH Aachen, GermanyOB1 flow controller user
“We are the proud owners of an OB1 we bought about a decade ago. It is still going strong. We would like to ask for a quote for another OB1.”Dr. David Tadres, University of California, Santa BarbaraOB1 flow controller user
“After an easy installation, we are now using the OB1 and flow sensors routinely and are very satisfied by both the flow stability and the software's user-friendly interface.”Nelson BC Serre and Matyáš Fendrych, Cell Growth Lab, Department of Experimental Plant Biology, Charles University, Czech RepublicOB1 flow controller user
“We have used Elveflow's products for about 9 years now and are big fans, and have made lots of recommendations to friends in Wageningen and the Netherlands. They are so easy to use, reliable and the pricing is sharp. We are very happy customers! ”Prof. Dr. Joris Sprakel, Physical Chemistry and soft Matter, Wageningen university, NetherlandsOB1 flow controller user
“I've extensively used Elveflow systems in the World's most Brilliant X-ray source. Elveflow systems are precise, controlled and adaptive to many samples under adverse conditions.”Pushparani Micheal Raj, PhD, Max Planck Institute of Quantum Optics, Lund, Sweden & MAX IV Laboratory, Bavaria, GermanyOB1 flow controller user
“We use Elveflow instrument in several projects and they are great to work with. The LabVIEW implementation was also very successful. I hope more people can get to know the OB1 system.”Seongjin Park, Senior Engineer, IlluminaOB1 flow controller user
For more details about Pressure driven flow control, please read this application note.
Contact us for expert help in microfluidics!
OtherUpgradeSupportAdvanced RangeOEMServices / Training / Installation / RentalsMicrofabricationEssential RangeAccessories
Get in Touch
Need customer support?
Name*
Email*
Serial Number of your product*
Support Type AdviceHardware SupportSoftware Support
Subject*
Message
I hereby agree that Elveflow uses my personal data Newsletter subscription
[recaptcha]