REAL-TIME 3D SHAPE MEASUREMENT OF MICRO DROPLET USING DIGITAL HOLOGRAPHIC MICROSCOPY

Oct. 29, 2012

Tsukasa Matsuo¹

Haruyuki Kinoshita² Teruo Fujii² Atsushi Moto¹

¹USHIO INC., Japan ²Institute of Industrial Science, The University of Tokyo, Japan USHIO

Lighting — Edge Technologies

Droplet based microfluidic device

Importance of understanding the droplet generation for the controlled transportation

Droplet shape and its deformation

- Use of the droplet for the fluid transport
 - Droplet size pL ~ nL ($10 \sim 100 \ \mu m$)
 - Transportation sample or reagent
- Advantages of using droplet
 - Less dead-volume.
 - Short analysis time
 - Improvement of analysis precision
- Continuous flow

2

Current shape measurement methods

Confocal microscope (OLYMPUS)	Commercial product	Measurement method	Measurement time
	Laser displacement sensor	Spot scanning \Rightarrow 3D data reconstruction	A few minutes
	Confocal laser microscope	2D scanning by Nipkow disk & Z scanning by piezo stage	A few seconds ~ A few minutes
	Interferometric microscope	Single Exposure 2D fringe pattern & 3 Fringe scanning for phase calculation	Sub-second

Only for static object / Invalid for dynamical phenomena

Requirement for 3D & real-time(time-series) measurement

USHIO Lighting -Edge Technologies

➤1. Development of the real-time and 3D shape measurement technique of microscopic droplet

&

≻2. Demonstration of effectiveness of the developed technique for 3D shape microscopic droplet

Our approach

Use of Digital Holographic Microscopy (DHM) because of its micro-second measurement time (depended on camera's exposure time)

The principle of the DHM

DHM = Optical microscopy + Interferometer ⇒ Intensity & Phase

Developed system

 ①Table-top DHM microscope
➤ Real-time measurement (scan free) by the off-axis formation

②Analysis software
>Real-time observation(over 30fps)
Using the GPGPU

W540 x H640 x D240 mm, 15 kg

Off-axis formation

Holographic method that the reference wave plane is slightly tilted relative to the objective wave plane.

Feature

- 1. Need only a single shot hologram for a single measurement.
- 2. By the effect of the 0-order beam and the conjugate image rejection, object phase is measurable quantitatively.

>We adopt the off-axis formation which enables the real-time & quantitative phase measurement

①Measurement target

②Measurement condition

Magnification	10 X	
Measurement area	XY: 563 × 563 μm Ζ: 986 μm	
Resolution	XY:1.1 μm Ζ: 0.062 μm	
Frame rate	60 fps	
Exposure time	1 ms	
Light source	HeNe laser 633 nm	
Illumination	Transmission	

T-shaped microchannel for droplet formation made from PDMS, hydrophobic nature

Working fluid: water(droplet), silicone oil

Analyzing process for the digital hologram

Hologram of the droplet

Fringe pattern a fringe tone ~ Amplitude a fringe pitch ~ Phase

Hologram reconstruction of droplet using only a single shot

Hologram images (raw CCD images)

Reconstructed images

>The movie is obtained by our original software

Extraction process of 3D shape

3D visualization

We have succeeded in real-time quantitative measurement of 3D shape of a droplet

Demonstration with a high-speed camera

Channel:

Cross-shaped microchannel for droplet formation made from PDMS, hydrophobic nature

Working fluid: water(droplet), silicone oil

②Measurement condition

Magnification	20 X	
Measurement area	XY:410×410 μm Ζ: 1078 μm	
Resolution	XY:0.8 μm Ζ: 0.062 μm	
Frame rate	1000 fps	
Exposure time	0.05 ms	
Light source	HeNe laser 633 nm	
Illumination	Transmission	

We have also successfully measured the dynamic change of droplet shape in 3D and in real time at 1 ms time intervals I. We have developed the real-time measurement technique of 3D shape microscopic droplet using the DHM

&

≻2. We have demonstrated the effectiveness of the DHM for 3D dynamical microscopic phenomena

[Future tasks]

- 1 . Applications to various microscopic objects ⇒bubble, red blood cell, etc…
- 2. Product commercialization

Please visit our booth exhibition ! Booth No. 15-16

